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The performance of a scheme proposed for automated routine monitoring of

deep-space missions is presented. The scheme uses four different tones (sinusoids)

transmitted from the spacecraft (S/C) to a ground station with the positive iden-

tification of each of them used to indicate different states of the S/C. Performance

is measured in terms of detection probability versus false Marm probability with

detection signM-to-noise ratio as a parameter. The cases where the phase of the

received tone is unknown and where both the phase and frequency of the received

tone are unknown are treated separately. The decision rules proposed for detect-

ing the tones are formulated from average-likelihood ratio and maximum-likelihood

ratio tests, the former resulting in optimum receiver structures.

I. Introduction

It has been proposed that automated routine monitoring of deep-space missions be provided by trans-

mitting one out of n (typically r_ = 4) different subcarriers (tones) from the spacecraft (S/C) and then

using a small automated terminal (for example, a 6-m low Earth orbiter terminal (LEO-T)-class) ground

station to ' ' ' " presence Oi- _U_UIIt_U of _1 ...... ;1.1_ _._ TI_n p_,oi_i,,o irl_ntifiont-inn (-,f on('h nf(AeEecL Lne _ 1....... _¢tt.ll iJuoolul_ tv_. . _._ ..................................

the tones at the receiver will indicate different stages of the S/C, for example, S/C healthy, S/C needs

help, S/C is going to transmit telemetry, etc. Since each of these tones is transmitted from the S/C to

the ground over an additive white Gaussian noise (AWGN) channel along with the added possibility of

Doppler distortion, the above-mentioned detection problem to be solved at the receiver can be formulated

as a binary hypotheses test of signal plus noise ve_us noise um_..--'-"In _,,_.............,.,,o_ 1 .... _l,o_.._o;_,_1

is modeled as a constant power sinusoid with unknown [i.e., uniformly distributed on (-rr, rr)] phase

and unknown (i.e., uniformly distributed in some interval (f_, ]:2) governed by the amount of Doppler)

frequency.

The optimum solution to problems of this nature is based upon maximum-likelihood (ML) consid-

erations of the type discussed in VanTrees [1]. In particular, the solution takes the form of a binary

hypothesis likelihood ratio test against a threshold whose value depends on the specified false alarm and

detection probabilities, the available signal power-to-noise spectral density ratio, and the duration of

l This work was performed under a NASA Summer Faculty Fellowship at the Jet Propulsion Laboratory, Communications

Systems and iResearch Section.
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the observation of the hypotheses. We shall see that there are, in principle, two detection/estimation

philosophies suggested by the ML approach, corresponding respectively to what is commonly known as

noncoherent detection, wherein no attempt is made to estimate the unknown parameters prior to detec-

tion, and pseudocoherent detection, wherein an attempt is made to first estimate the parameters (using

an ML approach) and then to use these estimates to aid in the detection process [2]. Since there appears

to be some question about which is the better approach, we shall consider both approaches, discuss their

philosophical differences, and compare their performances.

This article is organized in two parts. In Part 1, we consider the problem of optimally detecting

a sinusoidal signal of known amplitude (power) and frequency but of unknown phase [i.e., uniformly

distributed on (-Tr, Tr)] transmitted from a S/C to the ground over an AWGN channel. In so far as

the optimum receiver design is concerned, the problem will be formulated as a binary hypothesis test of

signal plus noise versus noise only with a single unknown parameter (i.e., carrier phase). In Part 2, we
consider the added possibility of Doppler distortion, which produces an uncertainty in the received carrier

frequency. Once again, the problem can be formulated as a binary hypothesis test of signal plus noise
versus noise only, where now the signal is modeled as a constant power sinusoid with unknown phase and

unknown frequency. Unfortunately, however, the theory for this case is not as well developed in [1] as for

the case where frequency is known. Nevertheless, other researchers [3-6] have examined problems of this

type in the context of frequency-hopped (FH) or direct sequence (DS) spread spectrum communication

systems, and we shall make use of their results wherever appropriate.

Part 1. Known Frequency and Unknown Phase

II. The Average-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Consider the transmission of a fixed (known) amplitude sinusoid with known frequency and unknown

phase over an AWGN channel. As such, the received signal can be modeled over the interval of observation

0 < t < T as corresponding to either of two hypotheses, namely,

_(t) - _(t, 0) + n(t) = v_cos(_ct + 0) + _(t) (la)

when indeed the signal was sent (hypothesis H1) or

r(t) = n(t) (lb)

when the signal was not sent (hypothesis H0). In Eq. (la), P, wc respectively denote the known signal

power and radian carrier frequency, and 0 denotes the unknown carrier phase assumed to be uniformly

distributed in the interval (-Tr, 7r). Also, n(t) denotes the AWGN with single-sided power spectral density

No W/Hz.

The optinmm detection of a signal transmitted over an AWGN channel is the solution to the problem

of finding the likelihood ratio (LR), defined as the ratio of the conditional probability density functions

(pdf's) of the received signal under the two hypotheses, namely,

A(r(t)) _ p (r(t)lH_) (2)
P("(t)lgo)

and then comparing this ratio to a suitable chosen threshold to decide between Ht and H0, i.e.,
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H1

A(r(t)) >

H0

(a)

In the case where all parameters of the signal are known, the evaluation of the numerator and denominator

of Eq. (2) is straightforward, namely,

{J }_ 1 --Noo (r(t) - s(t))2dtp (r(t)lH1) _x/Z_o exp 1
o

{J }_ 1 -_oop (r(t)lHo) _ exp 1 r2(t)d t
o

(4)

When the signal has an unknown parameter, e.g., the phase 0, then to compute the numerator of Eq. (3),

we must first condition the pdf p(r(t)lH1 ) on the unknown parameter (0) and then average over this
parameter, i.e.,

/p(r(t)lH1 ) = p(r(t)lHl,0)po(O)dO (5)
7r

where po(e) denotes the pdf of the unknown parameter 8. In our situation, the phase is assumed to be

completely unknown and, thus, po(e) is a uniform distribution. Also note that this conditioning on the

unknown parameter is now necessary in the denominator of Eq. (3) since the signal does not explicitly

appear in p(r(t)]Ho) [see Eq. (4)]. Hence, combining Eqs. (3) through (5), the average-likelihood ratio
(ALR) 2 becomes

A(r(t))

1 7T

27r f_-_ p(r(t)]H1, O)de

v(_(t)!H.)

1 f-,,_ _1 exp {--A_of[(r(t)-s(t,e))2dt}del

1 .... _ 1 rT 2,,x.ul

_,/_o_ I-_ Jo ' '°'_°l

PT 1 2 r(t)s(t, e)dt dO
= exp --_-_- _ exp

{ PT} 1 f _ {2V'2-P_ T }= exp --_o _,,_,_ exp _ "(0 cos(o.,_t+ e)dt dO (6)

2 We shall refer to this formulation as an average-likelihood ratio (ALR) test to distinguish it from another (in general, less

optimum) approach to be discussed shortly, in which a best (maxinmm-likelihood) estimate of the unknown parameter is

obtained first and then used in the detection process. We shall refer to the latter approach as a maximum-likelihood ratio

(MLR) test. This vernacular is not standard in the literature. What is important to understand here is that the words

average and maxzmum refer to the manner in which the unknown parameter is handled, i.e., the estimation part of the

problem and not the manner in which the decision on the hypothesis is made, i.e., the detection part of the problem. We

shall be more explicit and mathematically precise about these differences later on in the article.
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In arriving at the final result in Eq. (6), we have noted that the term exp {- for r2(t)dt/No } is common

to both the numerator and denonfinator and, thus, cancels, and also that

1 s2(t,O)dt = exp No J0e×p -_ --_o (7)

assunling weT > > 1, as is typically the case. Defining the in-phase (I) and quadrature (Q) correlations

-]oT )_Lc = r(t cos wctdt

P
T

L_ _ / )v/2= r(t sin wctdt
do

then Eq. (6) can be rewritten as

{ PT} 1 f" {2x/_ } { PT} (2v/-PL" _A(r(t)) = exp --_o _._.exp -_o Lcos(0 + a) dO = exp --_o-o Io \ No //
(8)

where

A I Ls
o_ = tail- --

Lc

(9)

Comparing A(r(t)) to a threshold r/is equivalent to comparing In A(r(t)) to In71. Thus, taking the natural

logarithm of Eq. (8), we obtain the equivalent decision rule

Hi

PT
(2X/PL'_ > ln'q+--

lnS°\xo ] <_ No
Ho

(10)

Finally, since In I0(x) is a nlonotonic function of its argument, x, and since PT/No can be absorbed into

tile (lecision threshold, then the, (lecision rule of Eq. (10) call be further simt)lified to

H1

23L >
No _<_

H0

(11)

or, equiwdently,
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Hi

L2 > $2/V_ A
< o _-F=7

Ho

(12)

i.e., the optimum decision of signal present versus signal absent is determined from a comparison of

the output of a square-law envelope detector with a normalized threshold, 7, whose value is determined

from the specifications on false alarm probability and detection probability (see the next section). An

implementation of the decision rule in Eq. (12) is illustrated in Fig. 1.

r (t)

or(,) dt

or(,)dt

>

_<7
Ho

Fig. 1. Average-likelihood (noncoherent) detector for detection of a single sinusoidal
tone with known frequency and unknown phase in AWGN.

B. Performance (Receiver Operating Characteristic)

The performance of the receiver in Fig. 1 is described in terms of its false alarm probability (PF),

defined as the probability of deciding Hi (signal is present) when indeed H0 is true (signal is absent), and

its probability of detection (PD), defined as the probability of deciding Ho (signal is absent) when indeed

H1 is true (signal is present). These probabilities are readily computed from knowledge of the first and
second moments of the Gaussian random variables Lc and L_ [see Eq. (8)] under the two hypotheses,

namely,

g 0 :

H1 :

E{L_} = E{L_} =0

var {Lc} = var {L_} -

E{Lc]O} = pVrP-Tcos0

E{LslO} = _ v/-fiTsin0

var {Lc} : var {Ls} --

NoT

NoT

(13)

To compute Pr, we observe that, under hypotheses H0, L is a Rayleigh random variable (L 2 is a central

chi-squared random variable). Thus,
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fo2" /; 27r(2T/2) Lexp ( L_oT)
PF = Pr{HI[Ho} = Pr{L 2 > 7]H0} = - dLdO

= 2Rexp(-R2)dR = exp - 7 (14)
NoT

Similarly, we observe that, under hypothesis H1, L is a Rician random variable (L 2 is a noncentral

chi-squared random variable). Thus,

/j 1 (L2+ff2_ (2L/3_d LPD = Pr{HllH1} = Pr{L e > 7[H1} = _Lexp NoT J Io \NoTJ

/32 _= (E{Lc[O}) 2 + (E{L_[O}) 2 = PT 2 (15)

= Rexp Io(Rd)dR = Q d,
NoT 2

where

d2 _ 2PT _ 2E (16)
No No

is the detection signal-to-noise ratio (SNR) and Q(a,/3) is the Marcmn Q-function detined by [1]:

_oo (z2+a2)O(c_,/3) = z exp 2 Io(az)dz (17)

Combining Eqs. (14) and (15) and eliminating the normalized detection threshold, one obtains the receiver

operating characteristic (ROC) given by

PD=Q(d,v/--21nPF) (18)

which is illustrated in Fig. 2 for several values of the parameter d (or, equivalently, E/No). Alternatively,

PD is plotted versus d2 with PF as a parameter in Fig. 3.

III. The Maximum-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Although the. exact evaluation of the numerator of the likelihood ratio in Eq. (2), i.e., p(r(t)lHl) is

obtained from the law of conditional probability as described by Eq. (5), namely, conditioning on the

unknown parameter and averaging its distribution, it is also possible to approximate this numerator

by first finding the ML estimate of the unknown parameter and then substituting this wtlue into the

l,robability p(r(t)tH1,0). That is, we approximate p(r(t)lSl) by p (r(t)lSt, OML),"conditional ill which

case the likelihood ratio test (now referred to as the maximum-likelihood ratio (MLR) test) becomes
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Fig. 2. ROC: frequency known and phase unknown.

H1

p(r(t)IH1,0ML) >
A(r(t))_ ,7 (19)

p (r(t)lHo) <

Ho

We refer to this approach of first optimally estimating the phase and then using this estimate to aid

the detection process as pseudocoherent detection. It is important at this point to emphasize that in the

general context of problems of this type, i.e., detection of signals with completely unknown parameters,

the performance of a r'eceiver derived from MLR considerations (e.g., a pseudocoherent receiver) is never

better than the performance of the ALR receiver (e.g., a noncoherent receiver), which is indeed optimum

under the assumed conditions. Thus, at best, one could hope that the MLR receiver would perform equally

well as does the ALR receiver. In the next section, we shall indeed reveal the extent to which this equality

in performance can be achieved for the problem at hand. First, however, let us derive the ML estimate

of ph_e, namely, OML, to be u._ecl in approximating the numerator of the likelihood ratio.

The ML estimate of t0 is defined as

h .... ma_ p(r(t)lHl,0)
o p(r(t)lHo) (20)

Using Eq. (4) in Eq. (20), it is straightforward to show that

OhlL I {/ol: maxexp r(t)s(t, to)dt =maxexp 2 2v/2P T
o _oo o _ r(t) cos (wet + to) dt

= maxexP0 --_-o Lc°s(0 + a)
(21)
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Fig. 3. Detection probability (PD) versus detection SNR (d 2):

(a) frequency known and phase unknown and (b) frequency
known and phase unknown (expanded view).

where tile envelope, L, and tile phase, c_, are defined by Eq. (9) together with Eq. (8). Since L is

positive and indel)endent of 0, then the maximization required in Eq. (21) is achieved when the argument

of the cosine flmction is equal to zero. Thus,

()ML= -a (22)

An implementation of this ML estimator of the unknown channel phase is illustrated in Fig. 4. Also

illustrated in Fig. 4 is the l)seudocoherent detector that employs this ML phase estimator, which can be

obtained by taking the natural logarithm of Eq. (19). We now find the decision rule based on the MLR

test in Eq. (19) and coral)are it with that of the previously discussed ALR test. Using Eq. (22) in Eq. (19)

gives, by analogy with Eq. (8),
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r (t)

J2(cos Wct + OML) I
i

I PHASEMODULATOR

COS _C t

J2sinwct

for(.) dt

H 1

>

<_7
No

_0 Te d()t

Lc

'i

MAXIMUM-LIKELIHOOD PHASE ESTIMATOR

Fig. 4. Maximum-likelihood phase estimator and pseudocoherent detector.

;,_ 28Lcos(<L+_) : exp-_ oxpL No jA(r(t)) _ exp --_o-o exp N
(23)

Taking the natural logarithm of Eq. (23), we then have, by analogy with Eq. (10),

H1

2v/P > PT
--L lnq4- --
No-_ < .No

Ho

(24)

Since, as previously noted, the term PT/No can be absorbed into the decision threshold, then an equiv-

alent test to Eq. (24) is

H1

2v_ L >
No <_

Ho

(25)

which is identical to Eq. (11)/ Thus, we conclude that in this particular circumstance, the MLR test

(pseudocoherent receiver) and the ALR test (noncoherent receiver) are identical. Hence, the performance

of the pseudocoherent receiver is also described by Figs. 2 and 3. It is to be emphasized again that

the equivalence found here between ALR and MLR receivers is not typical and applies only in this very
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special case of the detection of a signal with known frequency and unknown phase. More often than

not, the receiver derived from the MLR approach will have an inferior performance to the optimum one
derived from the ALR approach.

IV. A More Precise Formulation of the Problem

In reality, the subcarriers that are transmitted to indicate the status of the S/C are continuous square
waves that biphase modulate the carrier. Thus, denoting the carrier radian frequency and phase by wc

and 0c (previously called 0), respectively, and the square-wave subcarrier radian frequency and phase by

ws_ and 0s_, respectively, then the received signal analogous to Eq. (la) is given by

_(t) = s(t, Oc, Os_)+n(t)= _sin w_t+Oc+_ Sq (a_ct+O_) +n(t)

= 2v_ Sq (Wsct + Osc) cos (Wet + Oc) + n(t) (26)

Assuming that the harmonics with frequencies other than the sum and difference of wc and wsc are filtered

out, then in so far as detection is concerned, we may consider the received signal to be 3

r(t) = s(t,O_,O_)+n(t) = x/-fi {cos[(w_ + a_)t + (0_ + Os_)] + cos[(w_ - a3sc)t + (0_ - O_)]}+n(t) (27)

i.e., the problem is to detect the presence or absence of two tones in an AWGN background where both

aJc and 03_¢ are assumed to be known but both 0_ and 0s¢ are assumed to be completely unknown. For

convenience of notation, we shall rewrite Eq. (27) as

r(t) = s(t,o+,o_) + ,,_(t)= v_ {cos[_+t + 0+1+ cos[__t + 0_]} + n(t) (2s)

where

a):t: = 02 c + COsc

O+ _= 0_ + 0_

(29)

At first glance, it might appear that, because the phases Oc and Osc appear in the two signal tones as

their sum and difference, the detection of these tones cannot be performed independently. Interestingly

enough, 0+ _ 0_ + 0_ and 0_ _ 0_ - 0s_ when reduced modulo 27r can be shown to be independent

uniformly distributed random variables (see the Appendix). Thus, as we shall see shortly, the detection

of two distinct sinusoidal tones with independent random phases in an AWGN background can be treated

by a likelihood ratio approach analogous to that discussed in the previous section for a single tone in the
same background.

a In reality, the x/_ 5 amplitude factor m Eq. (27) should be (2v_/Tr)v/-_ = 0.9003x/_ to account for the amplitude of the

first harmonic in the square-wave subcarrier. For simplicity, we shall ignore this minor difference.
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A. The ALR Test

As discussed in Section II, the optimum decision rule is, in general, obtained by applying the average-
likelihood approach, which in this case means averaging the conditional likelihood function over the two

random phases 0+ and 0_. In particular, the conditional pdf of the received signal under hypothesis H1
is analogous to Eq. (5):

f f (1)./._2p(r( tlH1) = p(r( t ) lH1, 0 + , O_ )po+,o_ (0+, O_ )dO +dO_ = p(r( t )lH1, 0+ , O_ )dO +dO_
7r 7r 7r 7r

(30)

and, hence, the ALR becomes

f__,_ f__,_p(r(t)lH1, 0+, O_)dO+dO_

p(r(t)lHo)

i_ex.tNo

x _-_ exp _ r(t) cos(a_+t + O+)dt dO+ (31)

Defining the I and Q correlations for the sum and difference frequencies by

Lc± A r(t)v/-_cosa_+tdt

T

L_+ _= f r(t)v_sinw±tdt
JO

(32)

then, the likelihood function of Eq. (30) can be rewritten as

{"2v'_PL _ I0 /'v/2P '_ (33)

where, analogous to Eq. (9), the envelopes corresponding to the upper and lower subcarrier tones are
given by

L± g _/L_i + L_+ (34)

Alternately, in terms of the log-likelihood function, we arrive at the decision rule
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Hi

lnI0 In _ + -- (35)

So

Note that now, despite the fact that In I0(z) is a monotonic function of its argument, x, we cannot directly

simplify Eq. (35) to a form analogous to Eq. (11). Rather, to get such a form, one must approximate the

In I0(z) function by its series and asymptotic forms for small and large arguments, namely,

x

lnlo(x) _= -_, small x

Ixl, large x

(36)

Thus, for example, if we invoke the small argument approximation of the In Io(x) function in Eq. (35),

we get the decision rule (optimum for small SNR)

Hi

L 2 + L_. _ L 2 >_ = <'7

H0

(37)

where 7 is again a normalized threshold [not necessarily equal to the one defined in Eq. (12)]. The

decision rule in Eq. (37) suggests the ALR structure illustrated in Fig. 5, which is analogous to that given

in Fig. 1. For the large argument approximation of the lnI0(z) function, the ilnplementation of Fig. 5

would require square root devices in each arm entering the final summer prior to the decision device.

B. The MLR Test

Let us now again compare the noncoherent two-tone detector derived from ALR considerations and

specified by the decision rule of Eq. (35) to a pseudocoherent detector that can be derived from MLR

considerations. In particular, consider the joint ML estimates 0ML+, 0ML- of 0+, 0_ defined as

OML+, OML- = max P(r(t)lHl' 0+, 0_)
o+,o_ p(r(t)lHo)

(38)

which, because of the independence of 0+ and 0_, is determined as

= maxexp[ No r(t)cos(w_t+O_)dt exp -_0 r(t) cos(co+t+O+)dtOML+' OML- 0__,0_

= No - '1,No +cos(O+
(39)

where (_± arc defined in terms of L±, analogous to Eq. (9). The solution to Eq. (39) is

t}ML± = --a± (40)
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r (t)

,/2 cos w+t

sinw+t

---<,

T(') dt

T(=)dt

H,
>

_<7
No

Fig. 5. Average-likelihood (noncoherent) detector for detection of a pair of independent
sinusoidal tones with known frequencies and unknown phases in AWGN.

which, when substituted in Eq. (39), gives

exp - 0C+ exp _ =exp

Taking the natural logarithm of Eq. (40), we get the decision rule

_ PT_0 } exp _ 2x/-P L/LYo J
(41)

H1

> PT

_(L+ + L_) ln,1 + -- (42)_< No
Ho

Comparing Eq. (42) with Eq. (35), we observe that, in the two-tone case, the MLR test (which would

lead to a pseudocoherent form of detector analogous to Fig. 4) is not the same as the ALR test. However,

using the large argument approximation of the lnI0(x) function as given by Eq. (36), we see that the

ALR and MLR tests once again become equivalent. In summary then, we observe that, for detection of

a single tone in AWGN, the ALR (noncoherent) test and MLR (pseudocoherent) test are equivalent for

all SNRs, whereas for the detection of a pair of equal power tones in AWGN, the ALR and MLR tests

are equivalent only at sufficiently large SNR.

C. Performance (Receiver Operating Characteristic)

The performance of the low SNR receiver in Fig. 5 is, as before, described in terms of its false alarm

probability (Pr) and its probability of detection (PD). These probabilities are readily computed from
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knowledge of the first and second moments of the Gauss±an random variables Lc+ and Ls± [see Eq. (31)]
under the two hypotheses, namely,

H0: E{Lc±} = E{Ls±} =O

NoT
var {Lc±} = var {n_i} -

/-g

Hi: E{Lc±l O} = V2 Tc°s0± (43)

E{Lsil O} = _/-_Tsin0i

NoT
var {Lc±} : var {Lsi} - 2

To compute PF, we observe as before that, under hypothesis H0, L 2 is a central chi-squared random

variable (now with two more degrees of freedom). Thus,

PF = Pr{gllgo}= Pr{n2>TIH0}= rexp(-r)dr= 1+ y exp - 3 (44)
/N.T

Similarly, we observe that, under hypothesis H1, L 2 is a noncentral chi-squared random variable (now

with two more degrees of freedom). Thus,

No =Pr {H11H1} = Pr {L 2 > _,IH_} = R
NoT

R2 + d2)exp - 2 I1 (Rd)dR

(45)

where d 2 is the detection SNR defined as before [see Eq. (16)] and QM (ct,/3) is the generalized Marcum

Q-function defined by

j(oc (z)M_ 1 ( Z2 q_Ol2)QM (Oz,/3) = Z exp 2 Iv_l(az)dz (46)

Note that QM(a,/3) can be obtained from Q(a,/3) _ Ql(a,/3) by the relation [2, Appendix 5A]

QM(O_,/3) Q(a,/3) + exp (c_2 + _2) _t (_-) j= Ij (a/3)
2 3=1

Unfortunately, the normalized detection threshold cannot be explicitly eliminated in Eqs. (39) and (40)

to give a closed-form expression for the receiver operating characteristic (ROC) analogous to Eq. (18).

However, for any range of interest, the ROC can be determined numerically. Such numerical results are
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superimposedonthesingle-tonedetectioninFigs.2,3(a),and3(b). Weobservethat theperformance
penaltyassociatedwithusinga pairof subcarriertoneseachwith halfthetotal powerrelativeto the
full-powersinglecarriertonecaseisquitesmall,e.g.,ontheorderof 0.4dBor lessforPF = 10 -2 and

on the order of 0.3 dB or less for Pr = 10 -4. The degradation associated with the true optimum ALR

scheme as described by the decision rule of Eq. (35) would be even smaller. Thus, the performance curves

of the true optimum ALR scheme for two tones would lie between the solid and dashed curves in Figs. 2,

3(a), and 3(b) since indeed these performance results cannot beat those corresponding to the single-tone

case. Because of the small degradations involved, we choose not to simulate the true optimum case.

Part 2. Unknown Frequency and Unknown Phase

V. The Average-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Consider the transmission of a fixed (known) amplitude sinusoid with unknown frequency and unknown

phase over an AWGN channel. Analogous to Eq. (1), the received signal can be modeled over the interval

of observation 0 < t < T as corresponding to either of two hypotheses, namely,

7-(t)= s(t,o) + _(t) = v_cos(_t + 0) + n(t) (47a)

when indeed the signal was sent (hypothesis H1) or

r(t) = n(t) (47b)

when the signal was not sent (hypothesis H0). In addition to the previously defined parameters, in

Eq. (47a), f A=w/27r denotes the unknown carrier frequency assumed to be uniformly distributed in the

interval (fc - B/2, fc +B/2), where as before fc denotes the nominal carrier frequency (i.e., in the absence

of Doppler). When the signal has two unknown parameters, e.g., the phase 0 and frequency f, then to

compute the numerator of Eq. (3), we must first condition the pdf p(r(t)IH1) on both of the unknown

parameters and then average over them, i.e.,

= fY<:+B/2S?p(r(t)IH1) JI_-B/2 _ p(r(t)lH1, O, f)po(O)pf(f)dOdf
(48)

where po(O),pf(f) respectively denote the pdf's of the unknown parameters 0 and f. In our situation,

the phase and frequency are assumed to be completely unknown, and thus po(O) and PI(f) are uniform

distributions. Hence, combining Eqs. (3) and (48), the average-likelihood ratio (ALR) becomes

A(r(t))

1 fs'+B/2S?27rB Jf_-B/2 _ p(r(t)lH1, 0, f)dOdf
z

p(r(t)lHo)

II }"r l i"+Bi i:oxpf<2'l- - .oe,
: exp -N--o-o _ JL-BI2 _,-_ I, No

= 1 fI<+BI2 Io (2_L(f)_ df (49)
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where

L(f) _v/L_(f)+ L_(f) (50)

with

}Lc(f) _ r(t)v/2cos27rftdt

T

L_(f) _= fo r(t)v_sin2rcftdt

(51)

It should be noted that L(f) is nothing more than the magnitude of the complex Fourier transform (FT)

of r(t) in the interval 0 < t < T. If r(t) is band limited to W Hz, then for large WT, the real and

imaginary components of this complex FT, namely, Lc(f), Ls(f) can be approximated by the discrete

Fourier transforms (DFTs)

2WT

2 1 n n

n=l

21VT

2 1 n n

(52)

Comparing A(r(t)) to a threshold produces (after suitable normalization) the ALR decision rule

H1

 o\x ° ]v ,,Jf,-B/2 <_

Ho

Since Eq. (53) is overly demanding to implement, one discretizes the frequency uncertainty interval into

G = B/T- 1 = BT subintervals to each of which is associated a candidate frequency fi; i = O, 1, 2,. • •, G-1

located at its center. As such, the integration over the continuous uncertainty region in Eq. (53) is

approximated by a discrete (Riemann) sum and, hence, the approximate decision rule becomes

HI
G-1

/=0

H0

which has the imlfiementation representation of Fig. 6. It is important to understand that spacing the

frequencios f,_;z = 0, 1, 2,..., (7 - 1 by lIT guarantees independence of the noise components that appear

at the output of each spectral estimate channel. However, orthogonality of the signal components of these

same outputs depends on the true value of the received frequency relative to the discretized frequencies

fi; i - 0, 1, 2,.. •, G- 1 assumed for implementation of the receiver. That is, if the true receiw,d fl'equency

happens to fall on one of the fi's, then a signal component will appear only in the corresponding spectral
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Fig. 6. Average-likelihood (noncoherent) detector for detection of a single sinusoidal tone with unknown frequency and
unknown phase in AWGN.

estimate channel, i.e., all other channels will be noise only. On the other hand, if the true received

fl'equency falls somewhere between two of the fi's, then we have a loss of orthogonality in that a spillover

of signal energy occurs in the neighboring spectral estimates. The worst-case spillover would occur when

the true received frequency is midway between two of the f_'s.

We conclude this section by noting that a decision metric similar to Eq. (54) arises in the study of

FH or DS/low probability of intercept (LPI) optimum ALR (noncoherent) detection [3-5], where in the
FH case, f_; i - 0, 1, 2,.-., G - 1 corresponds to the G possible frequencies that the transmitted signal

can hop to and the detection is based on observation of a single hop of duration TH = T, and in the DS

case G is the number of possible code sequences that can occur in the observation interval. Many of the

results obtained from these works are directly applicable to the problem at hand.

B. Performance

It is tempting for large values of G (as is typically the case) to apply a central limit theorem argument

to the left side of Eq. (11), i.e., approximate it as a Gaussian random variable in so far as computing the
receiver operating characteristic associated .,, _1_:_ .]_:_;_ • [A] ITnf,_rt-l,nnt-oly, it W_S shown in [5]Wlbll blllb tlt:;t_l_lUll rule t_j. _ ................ L ,

that following such an approach is very poor when compared with results obtained from simulation or

numerical methods applied to the true decision rule of Eq. (11), even for values of G as large as 1000 or

10,000. In fact, it is stated in [5] that G on the order of "ten thousands is not guaranteed to be large

enough to validate the Gaussian approximation." Thus, to obtain the true receiver performance, we too

must resort to simulation and/or numerical methods, such as those suggested by Requicha [7], wherein

the characteristic function and fast Fourier transforms (FFTs) are used to compute approximate values

of the distribution function associated with the left-hand side of Eq. (11). More about this later on.
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VI. The Maximum-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Although the exact evaluation of the numerator of the likelihood ratio in Eq. (2), i.e., p(r(t)lH1 ) is

obtained from the law of conditional probability as described by Eq. (5), namely, conditioning on the

unknown parameters and averaging over their distribution, it is also possible to approximate this numer-

ator by first finding the ML estimates of the unknown parameters and then substituting these values into
the conditional probability p(r(t)IH1, O, f). That is, we approximate p(r(t)[Hx) by p(r(t)]H1, OML, ?ML),

in which case the likelihood ratio test (now referred to as the maximum-likelihood ratio (MLR) test)
becomes

( )H1p r(t)IHI,OML, _L >
A(r(t)) _ (55)

p(r(t)lHo ) <
Ho

where

OML, fun A=max P(r(t)lHl' O, f)
o,y p(r(t)lHo )

(56)

The maximization over 0 required in Eq. (56) can be performed identically to that in Section III [see

Eq. (23)]:

max p(r(t)lHl'O'f) exp(PT) (2V/PL(f)_ (57)
o p(r(t)lHo) = --_0-0 exp \ No .]

where L(f) is as defined in Eq. (50). Thus, the optimum maximum a posteriori (MAP) decision rule
becomes

HI

maxy exp --_0 exp \ N0 ] -<
Ho

(58)

Since the exponential is a monotonic function of its argument, we have the equivalent decision rule 4

HI

max L(f)I _<v/_>

H0

(59)

which results in a spectral maximum form of receiver. Again, because of the excessive demand placed on

the iulplementation by the need to evaluate Eq. (59) over a continuum of frequencies, we again quantize
the frequency uncertainty interval into G = BT subintervals, each with an associated candidate frequency

4 We define the normalized threshold equal to vf5 to be consistent with the notation used in Part 1. In this way, when G

is equated to unity, then our results obtained here will reduce to those given in Part 1 for the MLR decision rule.
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f,; i = 0, 1, 2,..., G- 1 located at its center. Thus, the frequency continuous decision rule of Eq. (59) can
be approximated by the decision rule

H1

>

max L(fi) <

H0

v_ (60)

which suggests the receiver of Fig. 7. Here again, as with Eq. (54), the orthogonality of the spectral

estimates is not guaranteed unless the frequency of the received signal falls on one of the fi's. Also, since

L(f,); i = 0, 1, 2,--., G represents a uniform sampling of L(f), then in view of Eq. (52), we can implement
Fig. 7 with FFT techniques.

I

I

I
----4
r(t)

I

I

I

Oth ENVELOPE DETECTOR

ith ENVELOPE DETECTOR

loT(e) dt

loT(o)dt

G - 1st ENVELOPE DETECTOR

"i

I

I

I

I LO'_)

I =

I

I

I-_

CHOOSE

Lmax = m/ax L (.fi)

Fig. 7. Maximum-likelihood detector for detection of a single sinusoidal tone with unknown frequency and
unknown phase in AWGN.

B. Performance

The performance of the MLR decision rule of Eq. (60) can be obtained analytically since the pdf of

G independent random variables can be explicitly written in terms of the pdf's of individual random

variables, which in turn are obtained from the results in Part 1. The procedure is as follows.

1. Best-Case Performance. Consider first the optinfistic (best) case, where the actual received

carrier frequency is indeed equal to one of the G frequencies, say fk used to approximately implement

the optimum decision rule as per the discussion following Eq. (59). Under H1, G - 1 of the L(fi)'s are

Rayleigh distributed with pdf [see Eq. (14)]

(L2)-£-2L -PL(/,)(L) = NoT exp ; L > 0 (61)
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and the single L(fi) that is associated with the received signal carrier frequency, namely L(fk), is Rician

distributed with pdf [see Eq. (15)]

2 ( L2+ (2L9 92 (621PD(A)(L) = _o-ToTexp - _VoT ] I0 k,N---_oT,/' L >_ 0, = PT 2

Let P_ denote the per frequency channel false alarm probability, i.e.,

P_ = Pr{L(fi) > v/-_lH0} = Lexp - dL = exp - (63)
No1

which is independent of fi. Then, the overall false alarm probability, PF, is given by

PF = Pr {maxL(fi)> v_lHo}

= 1 - Pr {L(fo) <_ v_,L(I1) <_ v_,'",L(fc-1) <_ v_lHo}

G-I G-1

= 1- H Pr{L(f{)_< x/_tHo} : 1- H (1- Pr{L(f.i) > v/-_lHo})
i=0 i=0

= 1- (1-P_)G = 1- 1-exp -N_0T (64)

Since, under H1, G - 1 of the spectral estimates (i.e., the ones containing noise only) have the same pdf,

namely Eq. (61), as under H0, and one spectral estimate has the Rician pdf of Eq. (62), then the overall

probability of detection, Pal, is determined from

G-1

PD = Pr {maxL(f.,) > v/_IH_} = 1- H (1 - Pr {L(f._) > v/_lH1}) = 1-(1 _ p_)G-1 (1 -P_) (65)
i=0

where P_ corresponds to the detection probability of the single-frequency channel containing the signal,

i.e.,

P; = Pr {L(f_) > v_iH1} = O d, =

Substituting Eqs. (63) and (65) into Eq. (66) gives

2"y
PI) = 1-(1-exp \( "[_'_G-1Q1-QQd,_))-_.].] (67)

or, equivalently, the overall probability of miss, PM, is
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( ( 7 27
PM=I-PD= 1-exp - 0T 1-Q d, (6S)

Note that, for G = 1, Eqs. (64) and (67) reduce, respectively, to Eqs. (14) and (15).

The ROC can be determined by eliminating the normalized threshold between Eqs. (64) and (67), in
which case one obtains

2. Worst-Case Performance. The worst-case performance occurs when the actual received carrier

frequency is indeed midway between two of the G frequencies used to approximately implement the

optimum decision rule as per the discussion following Eq. (59). Under H0, the false alarm performance is

still described by Eq. (64). However, under H1, all G spectral estimates are now Rician distributed with

pdf's of the form in Eq. (62), namely,

PL(I,)(L) = Lexp NoT Io kNoT.] , _

where the ¢_i's are determined as follows. Since [see Eq. (15)]

_ _= (E {Lc(fi)lO, f}) 2 + (E {Ls(fJlO, f}) 2 (71)

then, assuming that the actual received carrier frequency, f, is situated midway between fk and fk+l,

which are separated by 1/T, i.e., f = fk + 1/2T, Eq. (70) is evaluated as (for simplicity, we ignore the

edge effects at the ends of the frequency uncertainty band)

/3_ = PT 2 -/ 5 = . , _ ,

[ Trek-i+2) J [pTe(_) -(1

i=k,k+l

, 2

i )+2(-k-i) ; i#k,k+l

A 2 (72)= PT Fi

Finally then, analogous to Eq. (70), the detection probability would be given by

PD = 1 -- H 1 -- Q r_d, (7a)
i=0

which, in general, depends on fk, i.e., the location of f within the uncertainty band.

It has been suggested in [5] that the two nearest spectral estimates (envelopes) to the frequency
location of the received signal dominate the performance, i.e., the spillover effect of signal in the other
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frequencyslotscanbeignoredto afirst-orderapproximation.Whenthis isdone,then,underH1, two of

the spectral estimates are identically Rician distributed and the remaining G - 2 are identically Rayleigh

distributed. In this case, Eq. (73) is replaced by an expression somewhat like Eq. (67), namely,

PD : 1- (1- exp (-_oT)) (l-Q((2) d,u-ff_oT] ]

which is now independent of the frequency location of the signal. Combining Eqs. (64) and (74), the

ROC is approximately given by

PD 1 (1 PF)(G-2)/G(1 Q((2) d,v/-21n(1 (1 PF)I/G))) 2...... (75)

VII. A More Precise Formulation

As discussed in Section IV of Part 1, the true transmitted signal corresponds to a sinusoidal carrier

phase modulated by a square-wave subcarrier of radian frequency cost. At the receiver, the harmonics

with frequencies other than the sum and difference of wsc and w_ are filtered out, which means that in so

far as detection is concerned, the received signal in the absence of frequency uncertainty can be modeled
as

r(t) = s(t, Oc,0_) + 'n(t) = v/-fi{cos [(_o_+ _)t + (0_ + 0sc)] + cos [(C0c- wsc)t + (0_ - 0_)]} + n(t)

(76)

In the presence of frequency uncertainty due, for example, to Doppler shift, both the upper and lower

frequency tones in Eq. (76) will be shifted from their nominal values with the higher-frequency tone

experiencing a larger shift than that corresponding to the lower-frequency tone. If, however, the subcarrier

frequency is much smaller than the carrier frequency, i.e., wsc << w_, as is the case of interest, then for all

practical purposes, one can associate the frequency uncertainty with the carrier as discussed in Section V.A

and assume to a first-order approximation that both upper and lower frequency tones experience the same

frequency shift. Stated another way, we can assume that, in so far as detection is concerned, we observe

a pair of tones whose frequencies are unknown (but by the same amount), each in a band B Hz centered

around its nominal value. Furthermore, the uncertainty band is assumed to be very narrow with respect

to the subcarrier frequency, i.e., B << fsc.

A. The ALR Test

Analogous to what was done in Part 1, the conditional pdf of the received signal under hypothesis H1

is given by

(1)2 l fL+B/2f_ i:P(r(t)lH1)= _ "U Jf,.-I3/2 J-,r _P(r(t)lHl'O+'O-'f - fs_'f + fs_)dO+dO-df
(77)

wheroupon the ALR becomes

l ff '`+u/2 (__2_ L (f)'_ (____2_ )Io Io \ No L+(f) df
(78)

9O



In Eqs. (77) and (78), the spectral envelopes at the lower and upper tones are defined by

L+(f) zx _L2:k(f) + L_+(f) (79)

together with

L_+(f) _ fo r(t)v/2c°s[27r(f + dt

Ls±(f) _- r(t)g2sin[2rc(f + Lc)t]dt

(8o)

Discretizing the integration interval results in the approximate decision rule

)E Io L+(f_) Io L-(fi)
i=O

H1

>

<_

Ho

(81)

where the spectral envelopes required in Eq. (81) are defined analogously to Eqs. (79) and (80), with the
continuous random variable f replaced by the discrete random variable fi; i = 0, 1,- • •, G - 1. As was

the case for the single-tone result in Section V.A, the performance (ROC) of the decision rule in Eq. (81)
cannot be obtained analytically.

B. The MLR Test

Without going into great detail, it is straightforward to show (using the results of Section IV.B) that
the MLR test analogous to Eq. (58) becomes

Hi

max exp exp n+(f) exp. n_(f)
f . , , --

Mo

(82)

or, equivalently,

H1

>

max(L_(f) + L+(f)) < v'_f
Ho

(83)

which has the discretized version

H1

>

max(L_(fi) + L+(f)) <

Ho

(84)
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Unfortunately, the performance of the receiver that implements the decision rule of Eq. (84) also cannot

be obtained analytically.

VIII. Numerical Results

Since the performance of none of tile ALR optimum decision rules can be evaluated analytically and

since the same is true for some of the MLR decision rules, a computer simulation of these metrics has

been developed to numerically evaluate such performance. The results of such simulations are described

as follows. Figure 8 is a sample illustration of the ROC for the case of a single tone with unknown phase

and frequency (as described in Section V) and a detection SNR d 2 = 2PT/No = 6 dB. Both ALR and

MLR cases are illustrated, corresponding, respectively, to the decision rules of Eqs. (54) and (60). Also,

both the best- and worst-case input frequency scenarios are considered, corresponding, respectively, to the

cases where the actual input frequency is indeed equal to one of the G frequencies used to approximately

implement the decision rule and the case where the actual input frequency falls midway between any

two of these G frequencies. Clearly, the actual system performance corresponding to an input frequency

arbitrarily chosen in the uncertainty band will lie between these two performance bounds. We observe

from the results in Fig. 8 that the difference between best- and worst-case performance is relatively small,

as well as is the difference between the ALR (optimum) and MLR (suboptimum) decision rules. There

is a significant difference, however, between the performance for G = 10 and G = 100, indicating the

sensitivity of the performance degradation to a factor of 10 increase in frequency uncertainty. Also,

comparing Fig. 8 with the analogous curve in Fig. 2, corresponding to the case of unknown phase but

known frequency, we again see a rather significant degradation in performance when the frequency is

unknown even by only a factor of 10 relative to the observation bandwidth (reciprocal of the observation

time, T), i.e., G = 10.
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I I I I

0.2 0.4 0.6 0.8 1.0

FALSE ALARM PROBABILITY, PF

Fig. 8. ROC: frequency and phase unknown (single-tone)
simulation results.

As wu'ification of the MLR sinmlation results, we present in Fig. 9 the analogous analytical results

obtame(i from E(ts. (69) and (75). I/ecall that in arriving at Eq. (75) the assumption was made that

tim energy spillover effect of the signal into the other frequency slots is dominated by the two adjacent

ones. Thus, ignoring edge efl'ects, it. was not necessary to average over all possible worst-case (mid-

way) input frequency positions. In the (:omputer silnulation, this assumption was not invoked, as the

input frequency was allowed to occur midway between an_j two adjacent frequencies. Despite this analysis
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approximation, however, comparison of the results in Figs. 8 and 9 reveals excellent agreement between

analysis and simulation, i.e., the assumption of only adjacent signal energy spillover used to arrive at

Eq. (75) has been justified. Also indicated in Fig. 8 is the analytical result corresponding to known phase

and frequency (recall that this result is the same for both MLR and ALR) that allows a more direct

assessment of the performance degradation due to lack of perfect frequency knowledge.

Since the curves in Fig. 8 are drawn for a fixed value of detection SNR d2 = 2PT/No, then assuming

that P/No is specified, this implies that the observation interval, T, is also held constant. Thus, changing

the value of G = BT from 10 to 100 directly translates into a change by a factor of 10 in the frequency

uncertainty region B, which accounts for the observed degradation in performance. Another interpretation

of the numerical data can be obtained by again holding P/No fixed but observing the effect on system

performance of increasing T for a fixed frequency uncertainty region B. This necessitates plotting the
ROC with both d 2 and G increasing linearly with T. Such a plot for the ALR decision rule with best-case

input frequency is illustrated in Fig. 10, where the ROC is plotted for values of G = 10, 20, 40, and 80 (T
increasing by a factor of 2) and corresponding values d 2 = 6, 9, 12, 15 dB. To directly see the dependence

of MLR system performance on detection SNR, Fig. 11 illustrates the behavior of detection probability,

PD, versus detection SNR, d2, for a fixed false alarm probability, PF = 10 -2, and values of G = 10 and

100. These curves are obtained from numerical evaluation of the analytical results in Section VI. Since

along any curve G is held fixed, one can interpret these results as keeping the frequency uncertainty band,

B, and observation time, T, fixed and observing the change in performance as P/No is varied.

The penalty associated with detecting a pair of subcarrier tones (each at half the total transmitted

power) as opposed to a single carrier tone (at full transmitted power) is illustrated by the numerical
results in Fig. 12. Here we plot the ROC for both the single- and double-tone cases for the ALR decision

rule with best-case input frequency and a detection SNR equal to 6 dB. The results for the single-tone

case are taken directly from Fig. 8. We observe a significant performance penalty associated with using a

double-tone detection scheme. Figure 13 illustrates for the double-tone detection scheme results analogous

to Fig. 10 for the single-tone detection scheme. Here again, by comparing the two figures, we observe a

significant penalty associated with using a pair of equal half-power subearrier tones rather than a single

tone at full power.
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Fig. 10. ROC simulation results: frequency and phase unknown
(single tone), ALR, best-case input frequency.
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Appendix

On the Independence of the Sum of Difference of Two Uniformly
Distributed Random Variables Modulo

Consider two independent random phases OA and OB that are each uniformly distributed in the semi-

closed interval [-Tr, 7r). Define the sum and difference of these two random variables by

O+ = OA + OB

0'_ _= OA -- OB

and the modulo 27r versions of these random variables by

0+ _-A (0/+)rood 27r = (OA -_- 0B)mod 27r /

/0_ _ (0__)mod 2_ = (0A -- 0B)mod 27r

(A-2)

The probability density functions (pdf's) of 0__ and 0; are triangular in the semiclosed interval [-27r, 2_r),
i.e., they are the convolutions of two uniform pdf's, whereas the pdf's of their modulo 27r reduced versions,

0+ and 0_, are once again uniformly distributed in [-Tr, 70 (see Fig. A-l). We would now like to show
that 0+ and 0_ are indeed independent random variables. To do this, we shall show that the conditional

pdf Po_ (0_ [0+) satisfies Po_ (0_ [0+) = Po_ (0_), i.e., it is a uniform distribution in [-% 7r). Similarly, it

can be shown that po+(O+[O_) = po+(O+).

Let 0+ be any positive value in its region of definition, i.e., 0 <_ 0+ <_ yr. Then, 0 A and 0B are related
as follows:

{ --OA + O+ -- 27r, --Tr < OA < --Tr + O+OB =- --0 A + 0+, --7r q-O+ _ 0A _ 7r
(A-3)

From Bq. (A-l), we find that

a' -- fl 20A -- O+ + 27r, --Tr < OA <_ --Tr + O+ (A-4)
v_ [ 20A -- 0+, --Tr -t- O+ _- OA _- "it

Thus, from Eq. (A-4) and the fact that O A is uniform in the interval [-7r, 7r), the conditional pdfP02 (0210+)

appears as in Fig. A-2(a). Reducing 0__ modulo 27r produces the conditional pdf Po_ (0_ 10+) as illustrated

in Fig. A-2(b), i.e., a uniform distribution in the interval [-Tr, 7r) Q.E.D.
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Fig. A-1. The PDF of the sum and difference of (a) two uniformly distributed random variables and (b) two
univormly distributed random variables reduced modulo 2tr.
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Fig. A-2. Conditional PDF of the sum and difference of (a) two uniformly distributed random variables
and (b) two uniformly distributed random variables reduced modulo 21:.
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